Optimal flexibility of a flapping appendage in an inviscid fluid
نویسنده
چکیده
We present a new formulation of the motion of a flexible body with a vortex-sheet wake and use it to study propulsive forces generated by a flexible body pitched periodically at the leading edge in the small-amplitude regime. We find that the thrust power generated by the body has a series of resonant peaks with respect to rigidity, the highest of which corresponds to a body flexed upwards at the trailing edge in an approximately one-quarter-wavelength mode of deflection. The optimal efficiency approaches 1 as rigidity becomes small and decreases to 30–50% (depending on pitch frequency) as rigidity becomes large. The optimal rigidity for thrust power increases from approximately 60 for large pitching frequency to ∞ for pitching frequency 0.27. Subsequent peaks in response have power-law scalings with respect to rigidity and correspond to higher-wavenumber modes of the body. We derive the power-law scalings by analysing the fin as a damped resonant system. In the limit of small driving frequency, solutions are self-similar at the leading edge. In the limit of large driving frequency, we find that the distribution of resonant rigidities ∼k−5, corresponding to fin shapes with wavenumber k. The input power and output power are proportional to rigidity (for small-to-moderate rigidity) and to pitching frequency (for moderateto-large frequency). We compare these results with the range of rigidity and flapping frequency for the hawkmoth forewing and the bluegill sunfish pectoral fin.
منابع مشابه
The Efficiency of a Hybrid Flapping Wing Structure—A Theoretical Model Experimentally Verified
Abstract: To propel a lightweight structure, a hybrid wing structure was designed; the wing’s geometry resembled a rotor blade, and its flexibility resembled an insect’s flapping wing. The wing was designed to be flexible in twist and spanwise rigid, thus maintaining the aeroelastic advantages of a flexible wing. The use of a relatively “thick” airfoil enabled the achievement of higher strength...
متن کاملFlapping states of a flag in an inviscid fluid: bistability and the transition to chaos.
We investigate the "flapping flag" instability through a model for an inextensible flexible sheet in an inviscid 2D flow with a free vortex sheet. We solve the fully-nonlinear dynamics numerically and find a transition from a power spectrum dominated by discrete frequencies to an apparently continuous spectrum of frequencies. We compute the linear stability domain which agrees with previous app...
متن کاملFlapping propulsion using a fin ray
We calculate optimal driving motions for a fin ray in a two-dimensional inviscid fluid, which is a model for caudal fin locomotion. The driving is sinusoidal in time, and consists of heaving, pitching and a less-studied motion called ‘shifting’. The optimal phases of shifting relative to heaving and pitching for maximum thrust power and efficiency are calculated. The optimal phases undergo jump...
متن کاملOptimal propulsive flapping in Stokes flows.
Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid...
متن کاملEffects of Flexibility on the Aerodynamic Performance of Flapping Wings
Effects of chordwise, spanwise, and isotropic flexibility on the force generation and propulsive efficiency of flapping wings are elucidated. For a moving body immersed in viscous fluid, different types of forces, as a function of the Reynolds number, reduced frequency (k), and Strouhal number (St), acting on the moving body are identified based on a scaling argument. In particular, at the Reyn...
متن کامل